-
1 температура (темп.)
temperature (temp.)
-, абсолютная — absolute temperature
temperature value relative to absolute zero.
- атмосферного воздуха — free-air temperature
- аэродинамического нагрева — aerodynamic heat temperature
- в верхних слоях атмосферы — upper air temperature
- воздуха в трубопроводе (сист. кондиционирования) — duct (air) temperature
- воздуха на входе в двигатель — engine air inlet temperature, ram air temperature (rat)
- воздуха на входе в карбюратор — carburetor air (inlet) temperature
- воздуха перед карбюратором — carburetor air inlet temperature
- воспламенения — ignition temperature
минимальная температура, потребная для воспламенения или поддерживания горения вещества (топлива), — the minimum temperature required to ignite or cause self-sustained combustion of a substance.
- вспышки — flashpoint
температура, при которой образуются пары топлива или масла, мгновенно воспламеняющиеся при зажигании. — the temperature at which а substance, as fuel, oil will give off а vapor that will flash or burn momentarily when ignited.
- входящего масла (в двиг.) — oil inlet temperature (oil-in temp)
- выходящего масла (из двиг.) — oil outlet temperature (oil-out temp)
- выходящих газов (за турбиной) (твг) — exhaust gas temperature (egt), turbine gas temperature (tgt)
замер твг производится термопарой, установленной в реактивном сопле. — egt measurement uses the average signal from thermocouple-type probes located in the turbine exhaust.
- выходящих газов (твг-т4 без учета промежуточных температур перед и за турбинами вд и нд) — egt/tgt/ (т4)
- выходящих газов (твг-t7 с учетом промежуточных температур газов перед и за турбинами вд и нд) — egt/tgt/ (т7)
- выходящих газов, опасная (выше нормы) — exhaust gas overtemperature (еg ovtmp)
- выходящих газов, приведенная к мса — exhaust gas temperature (given) in l.s.a., egt based on isa conditions
- газов за турбиной — exhaust gas temperature (egt), turbine gas temperature (tgt)
немедленно прекращать запуск при забросе твг. — discontinue the start immediately after an indication of egt rise.
- газов за турбиной вд (т5) — hp turbine (exhaust) gas temperature (т5)
- газов за турбиной нд (т6) — lp turbine (exhaust) gas temperature (т6)
- газов за турбиной (в удлинительной трубе) — jet pipe temperature (jpt)
- газов за турбиной по прибору, максимальная — maximum observed egt
- газов на входе в турбину — turbine inlet temperature, turbine entry temperature (tet)
приборы силовой установки включают указатели оборотов (газогенератора) и температуры газов на входе в турбину. — engine indicating consists of the gas generator rpm indigating system and power turbine inlet temperature indicating system.
- газов на выходе из турбины — exhaust gas temperature (egt)
- газов перед турбиной — turbine inlet temperature
- газов перед турбиной вд (с учетом промежуточных температур газов перед и за турбинами вд и нд) (т4) — hp turbine inlet temperature (т4)
- головок цилиндров — cylinder head temperature (cyl. hd temp, cut)
- горения — combustion temperature
- дня — day temperature
-, заданная (выставляемая) — selected temperature
-, заданая (по усповию) — pre-determined temperature
- замерзания — treezing point
- заторможенного потока — stagnation temperature
-, заявленная — declared temperature
-, комнатная — normal raom temperature
- масла — oil temperature
- масла, минимально-допустимая для запуска (дв.) на земле и в воздухе — minimum oil temperature for starting and relighting
- масла, минимально-допустимая для дачи газа — minimum oil temperature before advancing the throttle
- масла на входе в двигатель — (engine) oil inlet temperature (oil-in temp)
- масла на выходе из двигателя — (engine) oil outlet temperature (oil-out temp)
- масла, низкая (недостаточная) — oil undertemperature
табло "мала темп. масла" загорается при падении темп. масла более чем на 10 ос ниже допустимой средней величины. — the oil under temp light comes on when oil temperature more than 10о c below average.
-, местная — local temperature
-, минусовая — subzero temperature
engine start after prolonged cold soak periods at subzero temperatures.
- на аэродроме — aerodrome temperature
- на аэродроме (на графике) — air temperature
- набегающего потока — ram air temperature (rat)
- (воздуха) на входе в двигатель — engine air inlet temperature
- на выходе из компрессора — compressor delivery temperature
- наружного воздуха ( hb) — outside/ambient, free ram/ air temperature (0.a.t., oat), free air static temperature
- на уровне моря — sea-level temperature
- невозмущенного потока (воздуха) — static air temperature
- окружающего воздуха — ambient (air) temperature
включить пос при наличии мокрого снега при т. окружающего воздуха ниже +10 ос — turn engine anti-ice on if wet snow is present with ambient air temperature below +10 ос.
- окружающего воздуха (на графике) — air temperature
- окружающей среды — ambient temperature
-, опасная — overtemperature (ovtmp)
- от -40 до (+) 50 ос — temperature (range) from to +50 ос
- относительно мса (на графике) — (incremental) temperature above and below isa, temperature deviation from isa
- пайки — soldering temperature
-, повышенная — elevated temperature
- пограничного слоя — boundary layer temperature
-, полная (торможения потока) — total air temperature (tat)
температура высокоскоростного потока воздуха, адиабатически заторможенного до нулевой скорости на передней кромке азродинамического профиля. — the "ram" temperature ereated on the leading edges of an aircraft traveling through the atmosphere. refers to the complete standstill of air molecules on the leading edgas of the aircraft.
- полного торможения (воздушного потока) — stagnation /total/ tamperature
-, постоянная — constant temperatufa
-, предполагаемая в эксплуатации — temperature expected in service
-, равновесная — equilibrium temperature
- самовоспламенемия — autoignition temperature
expected autoignition temperatura of the fuel in the tanks.
- сгорания — combustion temperature
-, стандартная — standard temperature
-, статическая — static temperature
- топлива — fuel temperature
- топлива, низкая (недостаточная) — fuel undertemperature
табло "мала темп. топлива" загорается при cниженин. — the fuel under temp light comes on during descent.
- торможения (воздушного потока) — stagnation /total/ temperature
- тормоза (колеса) — brake temperature
brake temp (amber) annunciator is lit when brakes are overheating
- точки росы — dewpoint (temperature)
температура, до которой необходимо охладить воздух или др. газ, чтобы содержащийся в нем водяной пар достиг состояния насыщения. — the temperature to which a given parcel of air must be cooled at constant pressure and constant water vapor content in order for saturation to occur.
высока т. в воздухопроводе (табло системы отбора воздуха от двигателя) — (air) duct ovht engine bleed air dueting is overheated.
высока т. воздуха (охлаждения) турбины (дв. n i) (табло) — turb air ovht (eng i) engine turbine cooling air is overheated (overtemperature).
высока т. газов турбины (табло) — overtemp tgt turbine gas temperature (tgt) is over temperature.
высока т. масла в... — (too) high temperature of oil in..., high oil temperature in...
высока т. масла 1-ro двигателя (табло) — (eng) i oil over temp, oil ovtemp, oil ovht indicates excessive oil temperature.
"высока т. раб. жидкости (в гидробаке)" (табло) — rsvr hi temp (light)
высока т. топлива 1-го двигателя (табло) — (eng) i fuel over temp
заброс т. — sudden rise in temperature
мала т. масла в... — (too) low temperature of oil in...,low oil temperature in...
мала т. масла 1-го двигателя (табло) — (eng) i oil under temp
мала т. топлива 1-го двигателя (табло) — (eng) 1 fuel under temp
(длительный) период воздействия низких температур падение т. на 1 км изменения высоты — (prolonged) cold soak period (at subzero temperature) temperature lapse rate of... ос per kilometre of altitude (height) increase
повышение т. — temperature rise
прирост т. — temperature increase
при т.... ос — at a temperature of... оc
защищать от воздействия высоких температур — protect (smth) from extreme /high/ temperaturesРусско-английский сборник авиационно-технических терминов > температура (темп.)
-
2 значение температуры
Atomic energy: temperature valueУниверсальный русско-английский словарь > значение температуры
-
3 устройство контроля температуры (КОД ANSI - 23)
устройство контроля температуры
Действует на увеличение или снижение температуры машины, аппарата или окружающей среды, если температура последних снижается или поднимается ниже или выше установленных пределов
Код ANSI -23
[ Источник]EN
23. temperature control device
A device that functions to raise or lower the temperature of a machine or other apparatus, or of any medium, when its temperature falls below or rises above a predetermined value.
NOTE: An example is a thermostat that switches on a space heater in a switchgear assembly when the temperature falls to a desired value. This should be distinguished from a device that is used to provide automatic temperature regulation between close limits and would be designated as device function 90T.
[ Источник]Тематики
Обобщающие термины
EN
Русско-английский словарь нормативно-технической терминологии > устройство контроля температуры (КОД ANSI - 23)
-
4 термоограничитель
термоограничитель
Термочувствительное устройство, рабочая температура которого может быть либо установленной, либо регулируемой, и которое в условиях нормальной работы срабатывает путем размыкания или замыкания цепи, когда температура контролируемой части достигает заданного значения.
Примечание. Термоограничитель не срабатывает в обратном направлении во время нормального цикла работы прибора. Он может требовать или не требовать возврата в исходное положение вручную.
[ ГОСТ Р 52161. 1-2004 ( МЭК 60335-1: 2001)]
термоограничитель
Термочувствительное управляющее устройство, предназначенное для поддержания значения температуры ниже или выше заданного при нормальных рабочих условиях, которое может иметь средства для настройки потребителем.
Примечание - Термоограничитель может быть с автоматическим или ручным возвратом. Он не осуществляет обратного срабатывания во время нормального рабочего цикла прибора.
[ГОСТ IЕС 60730-1-2011]EN
temperature limiter
temperature-sensing device, the operating temperature of which may be either fixed or adjustable and which during normal operation operates by opening or closing a circuit when the temperature of the controlled part reaches a predetermined value
NOTE - It does not make the reverse operation during the normal duty cycle of the appliance. It may or may not require manual resetting.
[IEC 60335-1, ed. 4.0 (2001-05)]FR
limiteur de température
dispositif sensible à la température, dont la température de fonctionnement peut être soit fixée, soit réglable et qui, dans les conditions de fonctionnement normal, fonctionne par ouverture ou fermeture d'un circuit quand la température de la partie commandée atteint une valeur préalablement déterminée
NOTE - Il n'effectue pas l'opération inverse lors du cycle normal de l'appareil. Il peut nécessiter ou non un réarmement manuel.
[IEC 60335-1, ed. 4.0 (2001-05)]Тематики
- электротехника, основные понятия
EN
FR
3.8.2 термоограничитель (temperature limiter): Термочувствительное устройство, рабочая температура которого может быть либо установленной, либо регулируемой и которое при нормальной эксплуатации срабатывает путем размыкания или замыкания цепи, когда температура контролируемой части достигает заданной.
Термоограничитель не срабатывает в обратном направлении во время нормального цикла работы.
Источник: ГОСТ Р МЭК 60745-1-2005: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования оригинал документа
3.52 термоограничитель (temperature limiter): Термочувствительное устройство, рабочая температура которого может быть либо установленной, либо регулируемой и которое при нормальной эксплуатации срабатывает путем размыкания и замыкания цепи, когда температура контролируемой части достигает заданного значения.
Источник: ГОСТ Р МЭК 60745-1-2009: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования оригинал документа
3.8.2 термоограничитель (temperature limiter): Термочувствительное устройство, рабочая температура которого может быть либо установленной, либо регулируемой и которое при нормальной эксплуатации срабатывает путем размыкания или замыкания цепи, когда температура контролируемой части достигает заданной.
Термоограничитель не срабатывает в обратном направлении во время нормального цикла работы.
3.7.2 термоограничитель (temperature limiter): Термочувствительное устройство, рабочая температура которого может быть либо установленной, либо регулируемой, и которое в условиях нормальной работы срабатывает путем размыкания или замыкания цепи, когда температура контролируемой части достигает заданного значения.
Примечание - Термоограничитель не срабатывает в обратном направлении во время нормального цикла работы прибора. Он может требовать или не требовать возврата в исходное положение вручную.
Источник: ГОСТ Р 52161.1-2004: Безопасность бытовых и аналогичных электрических приборов. Часть 1. Общие требования оригинал документа
Русско-английский словарь нормативно-технической терминологии > термоограничитель
-
5 значение потерь напряжения вследствие релаксации
- value of relaxation loss (in %), at 1000 hours after tensioning and at a mean temperature of 20 C
значение потерь напряжения вследствие релаксации
r1000
Значение потерь напряжения вследствие релаксации, %, 1000 ч после натяжения при средней температуре 20 °C.
[Англо-русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011]Тематики
Синонимы
EN
- value of relaxation loss (in %), at 1000 hours after tensioning and at a mean temperature of 20 C
Русско-английский словарь нормативно-технической терминологии > значение потерь напряжения вследствие релаксации
-
6 значения механических характеристик при пожаре, зависимых от температуры материала
- value of a material property in the fire situation, generally dependant on the material temperature
значения механических характеристик при пожаре, зависимых от температуры материала
Xk,q
—
[Англо-русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011]Тематики
Синонимы
- Xk,q
EN
- value of a material property in the fire situation, generally dependant on the material temperature
Русско-английский словарь нормативно-технической терминологии > значения механических характеристик при пожаре, зависимых от температуры материала
-
7 истинный
•Temperature changes were measured within 0.01°C of their true value.
•The characteristic equation gives genuine eigenvalues.
•Such systems are true dipoles.
Русско-английский научно-технический словарь переводчика > истинный
-
8 истинный
•Temperature changes were measured within 0.01°C of their true value.
•The characteristic equation gives genuine eigenvalues.
•Such systems are true dipoles.
* * *Истинный -- true, real; genuineThe most common problem is the generation of rotational frequency signals superimposed on the genuine signals.Русско-английский научно-технический словарь переводчика > истинный
-
9 ценностный индекс
Русско-английский большой базовый словарь > ценностный индекс
-
10 регулятор
regulator
устройство для поддержания параметра в заданных пределах, или изменения его по заданному закону (программe). — а device, the function of which is to maintain а designated characteristic at а predetermined value or to vary it according to a predetermined plan.
- (часть системы блока или контура регулирования) — control
- (ручка) — control (knob)
set the ind dim control to maximum light intensity.
- аварийной подачи кислорода по высотам — emergency oxygen altitude compensating regulator
-, автоматический — automatic regulator
автоматический или управляемый вручную регулятор предусмотрен для регулирования воздушного или газового потока. — an automatic or manual regulator is provided for contrailing the intake or exhaust airflow.
- весового расхода воздуха (системы кондиционирования) — air mass flow regulator
- времени приемистости — acceleration time adjuster
- входного направляющего апnapata — inlet guide vane control
-, гидро-механический (топливного насоса высокого давления) — hydro-mechanical governor
- громкости — volume control
переменное (регулируемое) сопротивпение уровня для изменения сигнала приемника или усилителя. — а variable resistor for adjusting the loudness of a radio receiver or amplifying device.
- громкости, автоматический — automatic volume control
автоматически поддерживает постоянный уровень выходного сигнала приемника или усилителя. — maintains the output of a radio receiver or amplifier, substantially constant.
- давления — pressure regulator
- давления, автоматический (ард, системы сарd) — (automatic) air pressure regulator
- давления, барометрический — barometric pressure regulator /controller/
- давления в кабине — cabin pressure regulator
- двигателей, электронный (рэд) — electronic engine control
- зазора (тормозных дисков колеса) — wear adjuster
послe растормаживания колеса регулятор зазора автоматически устанавливает необходимый зазор между неподвижными и вращающимися дисками (рис. 32). — wear adjuster keeps the preset working clearance between the rotor and stater plates of wheel brake.
- избыточного давления (рид) (в системе кондиционирования) — (positive) pressure differential regulator, differential pressure regulator
- избыточного давления (рд) (кислородной маски) — differential pressure regulator
- (компенсации) износа (тормозных дисков) — wear adjuster
- компенсации подачи кислорода по высоте — altitude compensating oxygen regulator
- максимальных оборотов (насоса-регулятора) — maximum speed governor
- максимальных оборотов (не допускающий заброса оборотов) — overspeed governor
- малого газа (гтд) — idling speed governor
- направляющего аппарата (pha) — inlet guide vane control (unit)
- напряжения — voltage regulator
устройство для поддержания напряжения генератора в заданных пределах. — а device that maintains or varies the terminal voltage of а generator at а predetermined value.
- напряжения, угольный — carbon-pile voltage regulator
- настройки (регулировочный винт) — adjuster
- настройки клапана перелома характеристик приемистости — acceleration time adjuster
- настройки максимальных оборотов (топливного регулятора) — maximum speed adjuster
- натяжения троса — cable tension adjuster /regulator/
- обогрева — temperature control
- оборотов — speed governor
механизм для поддержания оборотов двигателя (ротора) в заданных пределах. — governor is а mechanism designed to maintain the speed (rpm) of engine (rotor) within reasonably constant limits.
- оборотов воздушного винта — propeller speed governor
при превышении заданного числа оборотов, регулятор поворачивает лопасти воздушного винта в сторону большого шага, а при падении оборотов - в сторону малого шага. — governor is in onspeed condition when its system in neutral position, overspeed blades are moved to higher pitch, underspeed - blades are moved to lower pitch.
- оборотов, всережимный — all-speed governor
- оборотов, гидромеханический — hydraulic (speed) governor
регулятор имеет крыльчатку, работающую в качестве центробежного насоса масла, жидкости. — this governor consists of an impeller acting as а centrifugal pump with oil as fluid.
- оборотов (на режиме) малого газа — idling, speed governor
для поддержания оборотов малого газа при изменении нагрузки на агрегаты двигателя и температуры воздуха на входе в двигатель. — то maintain idling rpm under varying conditions of accessory load and air intake temperature.
- оборотов ротора (компресcopa) высокого давления (квд) — hp rotor /shaft/ (speed) governor
для поддержания постоянных оборотов ротора квд на заданном режиме и изменения режима двигателя при перемещении руд. — то maintain the hp rotor speed constant at the set power rating and to change the engine power with the throttle being moved.
- оборотов ротора (компресcopa) низкого давления (кнд) — lp rotor /shaft/ (speed) governor
- оборотов, центробежный — centrifugal governor
- падения давления (насосарегулятора) — pressure drop governor
- подачи кислорода (рпк, кислородного прибора) — oxygen regulator
- подачи кислорода по высотам — altitude compensating oxygen regulator
the altitude compensating regulator regulates the oxygen flow in relation to cabin altitude.
- (постоянного) перепада давлений — differential pressure regulator
- постоянства давления (наддува пд) — automatic manifold pressure regulator
- постоянства оборотов — constant-speed governor
- предельной температуры газов за турбиной — exhaust gas temperature (еgт) regulator
- предельных оборотов (в топливном насосе-регуляторе) — maximum speed governor
регулятор управляет командным давлением для ограничения максимальных оборотов квд двигателя. — the msg in the hp pump controls servo pressure to limit engine speed to a maximum of... n2.
- предельных режимов (рпр, двиг.) — (engine) limit governor
- привода постоянных оборотов (рппо) — constant speed drive governor
- пропорционального расхода (топпива) — proportional (fuel) flow regulater
- рамы — gimbal vertical controller
предназначен для вертикальной стабилизации следящей рамы курсовертикали.
- расхода (жидкости или газа) — flow regulator
- расхода (воздуха системы кондиционирования) — (air) flow rate control
- расхода топлива — fuel flow regulator (ffr)
- расхода топлива (узел дозирующей иглы насоса-регулятора) — throttle (valve) unit
- режимов двигателя, электронный (эррд) — electronic engine power governor (eepg)
- сброса давления (топлива форсажной камеры) — fuel pressure drop regulator
- скорости изменения давления (воздуха системы герметизации кабин) — air pressure rate control /regulator/
- смеси (пд) — mixture control
mixture control lever settings: "full rich", "auto rich", "auto lean", "idle cut-off".
- сопла и форсажа или форсажного контура (рсф) — exhaust nozzle and augmentor control
- степени повышения давления (гтд) — pressure ratio control unit
управляет створками реактивного сопла по сигналам рз и р6.
- температуры, автоматический (автомат регулирования температуры воздуха в системе кондиционирования) — automatic temperature control
- температуры, всережимный предельный (впрт) — all-power exhaust gas temperature regulator
- температуры воздуха в кабине — cabin temperature control /regulator/
- температуры выходящих газов — exhaust gas temperature regulator, egt regulator
- температуры газов за турбиной — exhaust gas temperature (egt) regulator
- температуры, предельный (двигателя) — top temperature regulator
- температуры топлива (топливомасляный агрегат) — fuel temperature regulator
топливомасляный агрегат работает в качестве регулятора температуры масла двигателя. — the fuel-oil heat exchanger functions as fuel temperature regulator.
- топлива (топливный) — fuel flow regulator (ffr), fuel control unit (fcu)
pt обеспечивает потребный расход и давление подаваемого к форсункам топлива на вcex режимах работы двигателя. — the fcu function is to regulate the correct fuel flows and pressures for all engine operating conditions.
-, управляемый вручную (принудительно) — manual regulator
- усиления, автоматический (ару) — automatic gain control (agc)
цепь для выдерживания постоянного уровня выходного сигнала приемника независимо от изменения уровня входного сигнала. — а type of circuit used to maintain the output volume of а receiver constant, regardless of variations in the signal strength applied to the receiver.
- форсажного топлива — afterburner fuel control unit
-, центробежный (оборотов) — centrifugal governor
- часов — clock regulator
для замедления или ускорения хода часов. position. — the clock regulator may be set in slow (s) or fast (f)
- частоты вращения — speed governor
- частоты вращения, центробежный — centrifugal speed governor
- числа оборотов — speed governor
- числа оборотов ротора вд — hp rotor (shaft) speed governor
- яркости — light intensity control
- яркости (устройства уви системы омега) — dimmer control (dim). allows illumination intensity of displays.Русско-английский сборник авиационно-технических терминов > регулятор
-
11 длительный допустимый ток
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
Русско-английский словарь нормативно-технической терминологии > длительный допустимый ток
-
12 соответствовать установившейся практике
Соответствовать установившейся практике-- The basic composition of the bath corresponds to usual practice. Соответствующий - appropriate (to); associated, involved, applicable, relevant, along the lines of (имеющий отношение к делу); proper, suitable, matching (подходящий); commensurate with, associated, corresponding (связанный зависимостью); corresponding, respective (при сопоставлении нескольких результатов, деталей); conforming to, complying with (подчиняющийся)The appropriate values are shown in Table and Fig.Physical properties appropriate to methanol boiling at atmospheric pressure were used throughout this analysis.It is important to note that the engine contained the normal regenerator disk and associated seals.It is possible that it [resonance] is not recognized as the casual agent and a general beefing-up of the parts involved is undertaken as a fix for the problem.The supplier shall establish procedures for identifying the product from applicable drawings.sT, sr are the stresses to give a specific strain or rupture in the lifetime of the vessel at the relevant temperature.Emergency shower, drench hose, and combination units are not a substitute for proper primary protective devices.A manipulator along the lines of Fig. has been examined by X.It is preferable to accept weaker weld metals with good ductility, rather than a weld metal which has matching strength but poor ductility.The atomizing air is preheated to the same temperature as the heated (temperature commensurate with 100 SSU viscosity) residual fuel oil entering the burner oil tube.Over the past few decades the generator capacity has been increasing steadily, warranting a corresponding increase in the rotor diameter.The initially measured value of the drag coefficient in each run is 10 percent to 12 percent higher than the corresponding steady-state value.Surrounding the stagnation zone are streak lines indicating that the fluid adjacent to the plate surface is flowing outward toward the respective edges.Русско-английский научно-технический словарь переводчика > соответствовать установившейся практике
-
13 график
chart, graph, curve, card
(графическое изображение взаимозависимых величин) (рис. 144)
- (по терминологии, принятой икао) — graph
- (кривая зависимости, напр. веса, высоты, температуры) — curve wat curves.
- (карта) — card
- (расписание) — schedule
- (участок графика, ограниченный с 4-х сторон) — carpet
- ветров — wind chart
- девиации (магнитного компаса) (рис. 86) — compass correction card
- девиации (радиокомпаса) (рис. 86) — quadrantal error calibration card /curve/
- зависимости величин (х) от величин (у) — value (х) for /versus, vs/ value (y) chart /graph/
- зависимости величины "r" и относительной скорости принятия решения от располагаемых длины разбега и дистанции прерванного взлета — value of "r" and v1/vr ratio for takeoff run available and accelerate-stop distance available chart /graph/
- зависимости (взлетного) веса ла, высоты и температуры воздуха (аэродрома) — (takeoff) weight-altitude-temperature curves, wat curves
- зависимости максимального взлетного веса от высоты аэродрома и температуры /graph/ — maximum takeoff weight for aerodrome altitude chart
- зависимости максимального взлетного веса от высоты и температуры аэродрома (подрисуночная надпись) — maximum take-off weight for altitude and temperature the wat curves should be titled as written above.
- зависимости максимального взлетного веса от располагаемых взлетной дистанции и дистанции прерванного взлета — maximum takeoff weight for take-off distance available and accelerate-stop distance available chart /graph/
- зависимости максимального поперечного момента от полетного веса — maximum lateral imbalance moment for /vs/ gross weight chart
- зависимости сбалансированной летной полосы от максимального взлетного веса — balance takeoff field length for maximum takeoff weight chart /graph/
the graph should be titled: balanced takeoff field length for maximum takeoff weight.
- захода на посадку — approach chart
- изменения центровки в полете — еn-route center of gravity variation chart
- на рис.1 иллюстрирует (показывает) — chart in fig.1 illustrates/provides/(a presentation of)
- опробывания двигателя — engine ground-test schedule
- остаточной девиации (магн. компаса) (рис. 86) — compass correction card /curve/
- перевода величин перевод атмосферного давления в барометрическую высоту аэродрома. — conversion chart /graph/ conversion of atmospheric pressure into aerodrome altitude.
- перевода относительной скорости принятия решения (при взлете) в скорость припятия решения — v1/vr into v1 conversion chart /graph/ the graph should be titled: conversion of v1/vr into v1 (km/h ias)
- полета — flight schedule
- поправок (к указателю скорости, высотомеру) — (airspeed indicator and altimeter) error correction chart /curves/
- потребной длины летного поля при взлете — takeoff field length required chart /graph/
- радиодевиации(радиокомпаса) — quadrantal error calibration curve
-, центровочный (указывающий предельные веса и центровки) — center-of-gravity diagram, balance diagram /chart/ (showing weight and balance limits)
- чистого градиента набора высоты в полете с одним отказавшим двигателем — en route net gradient of climb one engine inoperative chart /graph/
метод пользования г. — method of use of chart/graph/
правила пользования данным — the use of this chart /graph/
г. изложены в тексте — is explained in the text
пример пользования г. — example of use of chart
пример пользования графиком: — procedure for reading the chart /graph/, chart /graph/ reading procedure:
определите наибольший взлетный вес для данной длины впп следующим образом: начинайте отсчет с левой стороны графика (рис. i) от заданной располагаемой взлетной дистанции (6000 фт), проведите секущую до уклона впп (0,5 % вниз), а затем опустите перпендикуляр пo линии графика до пересечения с линией отсчета, и т. д. — (1) to determine the highest takeoff weight permitted by takeoff field length limitations, proceed as follows: using fig. 1 start on left of the graph from the given takeoff distance (6000 ft), proceed across to runway slope (0.5 % downhill), then down the guide lines to the reference line. (2) starting from the accelorate-stop distance available (5350 ft) proceed upwards through the slope grid to the wind component, then to the reference line.
форма г. четкость г. (для удобства пользования) из г. (рис. 1) выбираем, находим... — chart /graph/ form readability of graph (to facilitate accurate reading of the graph) use /refer to/ (fig i) to obtain /find/....
строить г. — plot /constuct/ chart
читать г. (в обратном направлении) — read chart (in reverse direction)Русско-английский сборник авиационно-технических терминов > график
-
14 дистанционное техническое обслуживание
дистанционное техническое обслуживание
Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
[ОСТ 45.152-99 ]Параллельные тексты EN-RU из ABB Review. Перевод компании Интент
Service from afarДистанционный сервисABB’s Remote Service concept is revolutionizing the robotics industryРазработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехникуABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).Proactive maintenanceRemote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.Прогнозирование неисправностейRemote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.MyRobot: 24-hour remote access
Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the mostСайт MyRobot: круглосуточный дистанционный доступДля того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.Award-winning solutionIn June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.Приз за удачное решениеВ июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.Higher production uptimeSince the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”Увеличение полезного времениС момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».Service accessRemote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.Доступность сервисаСеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service – Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.Тематики
- тех. обсл. и ремонт средств электросвязи
Обобщающие термины
EN
Русско-английский словарь нормативно-технической терминологии > дистанционное техническое обслуживание
15 указатель
indicator
(прибор, индикатор) — an instrument that makes information available, but does not store it.
- (список, перечень) — index
- автоматического радиокомпаса — adf indicator
- азимута — bearing indicator
- бокового скольжения — sideslip indicator
-, бортовой — airborne indicator
- вертикали (авиагоризонта) — vertical gyro assembly
- вертикальной скорости (рис. 59) — vertical speed indicator (vsi), rate-of-climb indicator
- вибрации двигателя — engine vibration indicator
- воздушной скорости — airspeed indicator (asi)
прибор для измерения в полете скорости самолета относительно воздуха (рис. 69). — an indicating instrument used in conjunction with an airspeed head (pitot tube) to indicate airspeed.
- воздушной скорости и числа м, комбинированный — combined airspeed-mach indicater
- воздушной скорости, комбинированный (кус) — combination airspeed indicator
прибор имеет две шкалы. внешняя с ценой деления 10 км в диапазоне от 50 до 730 км и внутренняя с ценой деления 10 км в диапазоне от 400 до 1100 км. большая стрелка показывает приборную скорость по внешней шкале, малая - истинную (воздушную) скорость по внутренней шкале (рис. 69). — the large pointer of the combination airspeed indicator (asi) displays indicated airspeed (on the outer scale) and small pointer - true airspeed on the inner scale.
- воздушной скорости с индикацией максимальной безопасной скорости — maximum safe airspeed indicator
- воздушной скорости с сервоприводом и цифровой индикацией — servo-driven airspeed indicator with counter display
- впп (прибора пкп) — runway symbol represents the runway center line.
- впп и малой высоты (прибора пкп) — runway symbol
для индикации отклонения ла от осевой линии впп, при заходе на посадку. начинает двигаться с высоты 200 фт. — represents the runway center line. slaved to radio altimeter. starts to indicate at 200 ft.
- выпущенного положения основной (передней) опоры шасси, механический (визуальный) — main (nose) landing gear visual downlock indicator
указатель выступает из о6шивки крыла или носовой части фюзеляжа при фиксации соответствующей опоры шасси в выпущенном положении. — the indicator can be seen on top of each wing (or fuselage nose) when the gear is safely down and locked.
- высотомера — altimeter (altm)
- высоты — altimeter (altm)
прибор, указывающий высоту полета ла над заданным уровнем отсчета (над уровнем моря или другой уровенной поверхностью) (рис. 69). — an instrument for measuring or indicating the elevation of an aircraft above a given datum line or point. its grаduations indicate units of height above sea level, or any reference line.
- высоты (цифровой) — altitude readout
- высоты и перепада давлений (увпд), кабинный — (cabin) altitude and differential pressure indicator (cab alt & diff press)
прибор для указания высоты в кабине (внешняя шкала) и перепада давлений (внутренняя шкала) (рис. 69). — an instrument for indicating the cabin pressure altitude (on outer scale) and differential pressure (on inner scale).
-"высоты кабины" — cabin altitude indicator
- гиромагнитного и радио курсов (курсовых углов радио станций) (угр) — radio magnetic indicator (rmi)
- горизонта — attitude /bank and pitch/ indicator
- горизонта (прибора кпп, самолетик-крен, и шкала тангажа) — (fdi) attitude display
- давления — pressure indicator
- давления (воздуха, масла, топлива) — (air, oil, fuel) pressure indicator
- дальномера (рис. 69) — dme (distance measuring equipment) indicator
- дальности — distance indicator
distance information output is for feeding to a distance indicator.
- дальности (счетчик) — dme (readout) counter
- дальности полета (пройденного пути) — distance flown indicator
- двухстрелочный — two-pointer indicator
-, директорный (командный) v-образный (прибора пкп) — v-bar command indicator
- дистанционного авиагоризонта (прибора кпп или пкп) — flight director indicator (fdi)
-, дистанционный — remote-reading indicator
- (стрелка) заданной траектории (снижения) — glide slope deviation pointer
- (стрелка) заданных курсов (прибора пкп) — course arrow
- задатчика (приборной скорости) (узс) — ias selector indicator
- запаса кислорода — oxygen, quantity indicator
- запаса топлива, суммирующий (топливомер) — total fuel quantity indicator, fuel totalizer
- земной индикаторный скорости — calibrated airspeed indicator, cas indicator
- избыточного давления в гермокабине — cabin overpressure indicator
- измерителя крутящего момента (икм) — torque meter
- износа (тормозных дисков) — wear indicator
стержень указателя износа прикреплен к нажимному диску и выступает (в зависимости от износа) над поверхностью корпуса тормоза. — то give visual indication of brake wear а wear indicator rod is secured to the pressure disc and projects through the torque plate.
- (-) индикатор доплеровской рлс — doppler indicator
- интенсивности обледенения — icing rate indicator
- истекшего времени — elapsed time indicator
- комбинированный — combination indicator
-, комбинированный (вертикальной скорости, поворота и скольжения) — rate-of-climb, turn and slip indicator (turn & climb)
-, комбинированный (курсовой системы, типа нпп) — flight compass
- контроля вибрации, бортовой (дв.) — airborne vibration monitor indicator, avm indicator
-, контрольный (при проверках) — reference indicator
- крена — bank indicator
пилотажный прибор, указывающий угол наклона самолета относительно продольной оси. — а flight instrument which indicates angular rotation of the airplane about the longitudinal axis.
- (углов) крена (прибора пкп) (рис. 72) — bank pointer
- крена (силуэт самолетик прибора кпп) — rotating miniature aircraft operates as a bank indicator.
- крена, шариковый — ball-bank indicator
- курса (общий термин) — direction indicator
указаталь курса может быть гироскопическим, магнитным или электрическим прибором. — direction indicator may be gyroscopically stabilized, magnetic or electric instrument.
- курса (ук-1) для показаний углов отклонения от заданного курса. — (desired, selected) heading deviation indicator
- курса (подвижный индекс курса прибора пнп) (рис. 73) — heading marker /bug/
- курса и азимута (радиостанций) — bearing and heading indicator (bhi), radio magnetic indicator (rmi)
- курса и пеленгов (радиостанций) — bearing and heading indicator (bhi)
- курса и пеленгов (радиостанций) со счетчиком дальности — bearing, distance and heading indicator (bdhi)
- курса, магнитный — magnetic compass
- курса следования — course /track/ indicator
- крена и тангажа (укт, повторитель аг) — attitude indicator
- (стрелка) курсовых углов (прибора пкп) — relative bearing (rb) pointer
- малых скоростей (вертолета, работающий от дисс) — low-speed indicator
- манометра (масла) — (oil) pressure indicator
- мгновенного расхода топливa (умрт) — fuel flow (rate) indicator (ffi)
- механический — mechanical indicator
- навигационных параметров (инерциальной навигационной системы) — pictorial deviation indicator (pdi) provides pictorial display of navigation information produced by ins.
- наддува (пд) — manifold /boost/ pressure indicater
- наработки — elapsed time indicator
- наработки, пяти-цифровой — 5-digit elapsed time indicator
-, наружный визуальный — exposed sight indicator
- обжатия амортизатора (шасси) — shock strut compression indicator
- оборотов (рис. 69) — tachometer (indicator)
- относительной скорости (усо) — relative speed indicator
- общего шага (несущего винта вертолета) — (main rotor) collective pitch indicator
- общей заправки топливом (топливомер) — total fuel quantity indicator, fuel totalizer
- оставшегося времени (следования до заданного пункта маршрута) — time-to-go indicator
- оставшегося пути (до заданного пункта) — distance-to-go indicator
- остатка топлива — fuel remaining indicator
- отказа исполнительных механизмов прибора (пнп) — servo failure indicator
- отклонений, наглядный — pictorial deviation indicator (pdl)
обеспечивает индикацию пу, зпу и зк относительно истинного направления на север,a также лбу и ус. — the indicator displays tk, dsrtk, hdg with respect to true north, and xtk and da.
- отклонения (от заданного положения направления движения) — deviation indicator
- отклонения от заданной скорости (рис. 72) — speed pointer
- отклонения от заданной траектории в вертикальной nлoскости (отклонения от равносигнальной зоны грм) (рис. 72) — glide slope pointer (to indicate deviation from glide slope beacon beam)
- отклонения от заданной траектории в горизонтальной плоскости (отклонения от равносигнальной зоны крм) (рис. 72). — localizer pointer (to indicate deviation from localizer beam)
- относительной барометрической высоты — altitude indicator
- относительной высоты — height indicator
-, отношения давлений (уод, указатель тяги двиг.) — engine pressure ratio (epr) indicator
- перегрузок — accelerometer
- перенаддува гермокабины — cabin overpressure indicator
- перепада давлений — differential pressure indicator (diff press ind)
- поворота — turn indicator
пилотажный прибор, измеряющий угловую скорость самолета относительно вертикальной оси (рис. 69). — turn indicator displays rate of turn of the aircraft about the vertical axis.
- поворота и крена комбинированный прибор для индикации угловой скорости поворота и угла крена. — turn and bank indicator an instrument combining in one case а turn indicator and а lateral inclinometer.
- поворота и скольжения — turn and slip indicator (turn & slip)
- "поворота и скольжения командира" (надпись) — turn & slip, captain's
- поворота переднего колеса — nose landing gear steering indicator
- поворота, электрический (эуп) (рис. 69) — electric turn indicator
- (-) повторитель — slave indicator
- положения (подвижных элементов) — position indicator
- положения верхней мертвой точки (поршня пд) — top-center indicator
- положения глиссады — glideslope pointer
стрелка пилотажного командного прибора, показывающая положение самолета относительно луча глиссады (рис. 72). — the glideslope pointer represents the center of the glideslope beam, the center line of the glideslope scale represents aircraft position.
- положения закрылков — flap position indicator
- положения клина воздухозаборника — air intake ramp position indicator
- положения курса (рис. 72) — localizer pointer
- положения механического замка створок реверсивногo устройства (двиг.) — thrust reverser door mechanical lock indicator
- положения подвижных элементов самолета — position indicator
- положения рулей — (control) surface position indicator (spi)
- положения руля высоты (нуль-индикатора) — elevator trim indicator
- положения руля направления (нуль-индикатора) — rudder trim indicator
- положения рычага топлива (упрт) — throttle position indicator
- положения рычага управления двигателем (руд) — throttle lever position indicator
- положения самолета в боковом движении (прибора нкп) — course deviation bar
- положения самолета в npодольном движении (прибора нкп) — glide slope deviation bar
- положения сиденья — seat position indicator
indicates longitudinal position of seat from zero to (7) inches.
- положения (управляемого стабилизатора) (рис. 69) — horizontal stabilizer (trim) position indicator
- положения тормозных щитков — airbrake position indicator
- положения шасси — landing gear position indicator
- положения шасси, механический — mechanical landing gear position indicator
стержень указателя выступаeт над обшивкой (фюзеляжа и крыла) при выпущенном положении шасси, и убирается заподлицо с обшивкой при полной уборке стойки шасси. — the mechanical l.g. position indicator rod projects through а socket in the skin when l.g. is extended and disappears when l.g. is fully retracted.
- положения шасси с краснобелой маркировкой — landing gear position barber pole indicator
the landing gear in transient is indicated by the barber pole.
- положения элеронов (нульиндикатора) — aileron trim indicator
- потери мощности (даигателя) — power loss indicator
датчик указателя реагирует на резкое падение давления в реактивной трубе, что обычно сопровождает потерю тяги. — the power loss indicator sensor defects sudden drop in the jet pipe pressure which accompanies the engine power loss.
- потребляемой (эпектрической) мощности (в квт) — kw meter
- предельной степени повышения давления в двигателе — engine pressure ratio limit indicator (eprl indicator)
- приборной скорости — ias indicator
- пройденного пути (ла) — distance flown indicator
- пройденного пути (в милях) — air-mileage indicator
-, профильный (вертикальный) — vertical-scale indicator
-, профильный (с вертикальной ленточной шкалой) — vertical tape indicator
- путевой скорости и расстояния до пункта назначения — ground speed and distance-togo indicator
- путевой скорости и сноса, (доплеровский) (рис. 82) — (doppler) ground speed and drift indicator
- работы рулевых машин(ок) автопилота (нуль-индикатор) (рис. 69) — trim indicator
показывает наличие воздействия рулевых агрегатов на поверхности управления. — display when servo force is being applied to а control surface.
- радиодальномера — dме indicator
- радиомагнитный (рми) — radio magnetic indicator (rmi)
комбинированный прибор, показывающий направление на всенаправленный маяк. обеспечивает индикацию neленга, курса и курсового угла радиостанции. — а combined indicator which points toward the omnirange station, it combines omnibearing, heading, and relative bearing.
- расхода воздуха (кислорода, топлива) — air (oxygen, fuel) flow indicator
- расхода воздуха в кабине (урвк) — cabin air flow indicator
- расходомера топлива — fuel flow indicator
- (измеритель) режима (гтд) (рис. 69) — engine pressure ratio (epr) indicator
- сближения с впп (прибора пкп) — (rising) runway symbol
связан с радиовысотомером. начинает двигаться с высоты 200 фт и касается условных основных шасси самолетика при касании впп колесами основного шасси самолета. — slaved to radio altimeter to provide rising runway display. starts to indicate at 200 ft and will touch the symbolic main gears of the aircraft symbol at touch down.
- с вертикальной ленточной шкалой — vertical tape indicator
-. сдвоенный — dual indicator
- с графическим отображением информации — pictorial display (indicator)
в вычислительное устройство подаются сигналы путевой скорости и сноса от доплеровского измерителя путевой скорости и сноса, и сигналы курса от курсовой системы, выходные сигналы ву используются для графической и цифровой индикации. — the doppler computer асcepts inputs of velocity along and across aircraft axis from the doppler (equipment) and а heading input from the compass system, and drives а pictorial or digital display.
- сельсина (электрический эус) — synchro indicator
- (-) сигнализатор — contacting indicator
индикатор с контактным устройством, срабатывающим при достижении заданной величины. — in the contacting indicator the electrical contacts are made or broken at a predetermined value.
- скольжения (рис. 72) — slip indicator
- скольжения, шариковый — ball-slip indicator
- скорости вибрации двигателя — engine vibration indicator
- скорости, воздушной — airspeed indicator
- скорости, воздушной, приборной (усвп) — ias indicator
- скорости изменения высоты в (гермо)кабине — cabin rate-of-climb indicator
- скорости и числа м (комбинированный) — airspeed and mach-number indicator
- (приборной) скорости с индексом заданных значений — airspeed indicator with speed marker /bug/
- слепой посадки (с курсовой и глиссадной стрелками) — ils cross-pointer indicator, zero-reader flight director indiсator
- с непосредственным отсчетом — direct-reading indicator
- сноса прибор для указания угла сноса ла. — drift indicator the instrument used to measure angle of drift.
- согласования гпк и ид гироиндукционного компаса в режиме магнитной коррекции — alignment sync indicator indicates synchronized condition of directional gyro and flux gate when operating in mag mode.
- с перекрещивающимися (командными) стрелками курса и глиссады — ils cross-pointer indicator, zero-reader flighf director indicator
the cross-pointer indicator contains a loc and g/s pointers.
- степени повышения давления (двиг.) — engine pressure ratio indicator, epr indicator
the epr indicator represents the engine thrust.
- с тросовой передачей, механический — cable-operated indicator
- суммарного запаса топлива (топливомера) — total fuel quantity indicator, fuel totalizer
(total fuel qty)
- суммарного расхода топлива — total fuel consumed indicator, fuel flow totalizing indicator
- суммарного расхода (остатка) топлива — fuel remaining indicator
-, суммирующий — totalizing indicator, totalizer
- с цифровым отображением информации — digital display indicator
- тангажа (подвижный индекс прибора пп-1) — pitch trim bug
- тахометра (рис. 69) — tachometer (indicator)
lp rpm is displayed on a tachometer indicator for each engine.
- текущего курса (неподвижный индекс курса) (рис. 73) — heading lubber line
- текущего расхода и запаса топлива — fuel flow and quantity indicator
- термометра (воздуха, масла) — (air, oil) temperature indicator
- температуры — temparature indicator
- температуры газов за турбиной — exhaust /turbine/ gas temperature indicator, egt/tgt/indicator
- температуры масла — oil temperature indicator
- температуры набегающего потока (с учетом нагрева от сжимаемости воздуха) — ram air temperature (rat) indicator (with correction for air heating by compressibility effects)
- температура наружного воздуха — outside /free/ air temperature indicator (o.a.t. ind)
-, технологический (контрольный, применяемый при проверках) — reference indicator
- топливомера — fuel quantity indicator
прибор, указывающий членам экипажа количество расходуемого топлива в каждом баке. "- топливомера" (надпись у прибора) — an instrument to indicate to the flight crew-members, the quantity of usable fuel in each tank during flight. fuel qty
- топливорасходомера — fuel flow indicator
-, трехстрелочный (моторн. индикатор) — 3-pointer engine gage unit
- тяги (гтд) — thrust indicator
- тяги (указатель отношения давлений, уод) — engine pressure ratio (epr) indicator
отношение давлений на выходе и входе двигателя (степень повышения давл. двиг.) пропорционально тяге двигателя, и используется для индикации и контроля режимов работы двигателя (рис. 69). — the epr indication is proportional to thrust and is the instrument used to set up any desired thrust condition.
- угла атаки — angle-of-attack indicator (ang-of-attk ind)
- угла атаки с датчиком флюгерного типа — vane-driven angle-of-attack indicator
- углов атаки н перегрузок (рис. 69) — angle-of-attack and acceleration indicator
- углов крена (рис. 72) — bank pointer
- углов сноса (рис. 73) — drift pointer
- угр (указатель гиромагнитного и радио курсов) — radio magnetic indicator (rmi)
- уровня — level gauge /gage/
- уровня (мерное стекло) — sight gauge /gage/
- уровня (количества) жидкости — fluid level indicator the fluid level indicator is mounted on the hydraulic panel.
- ускорений — accelerometer
-, цифровой (в каталоге) — numerical index
- частоты вращения (тахометр) — tachometer (indicator)
- частоты вращения роторов двигателей — engine rotor tachometer (indicator)
- числа м — machmeter
прибор, измеряющий отношение воздушной скорости полета самолета к скорости звука на данной высоте (рис. 69). — а special airspeed indicator that measures speed relative to the speed of sound.
- числа м с электрической сигнализацией — contacting machmeter
прибор с сигнализатором (контактным устройством), срабатывающим при достижении заданной скорости по числу м. — an instrument in which electrical contacts are made or broken at a predetermined mach-number.
- числа оборотов — tachometer (indicator)
- штурмана для показаний магнитного или истинного курса самолета, пеленгов двух радиостанций, их кур и выдачи сигналов курса потребителям. — bearing and heading indicator (bhi)
- штурмана (уш) (рис. 69) для индикации путевого углa н курса самолета. — course/heading indicator, tk/hdg indicatorРусско-английский сборник авиационно-технических терминов > указатель
16 явление электрической дуги
явление электрической дуги
-
[Интент]Параллельные тексты EN-RU
Electric arc phenomenon
The electric arc is a phenomenon which takes place as a consequence of a discharge which occurs when the voltage between two points exceeds the insulating strength limit of the interposed gas; then, in the presence of suitable conditions, a plasma is generated which carries the electric current till the opening of the protective device on the supply side.
Gases, which are good insulating means under normal conditions, may become current conductors in consequence of a change in their chemical-physical properties due to a temperature rise or to other external factors.
To understand how an electrical arc originates, reference can be made to what happens when a circuit opens or closes.
During the opening phase of an electric circuit the contacts of the protective device start to separate thus offering to the current a gradually decreasing section; therefore the current meets growing resistance with a consequent rise in the temperature.
As soon as the contacts start to separate, the voltage applied to the circuit exceeds the dielectric strength of the air, causing its perforation through a discharge.
The high temperature causes the ionization of the surrounding air which keeps the current circulating in the form of electrical arc. Besides thermal ionization, there is also an electron emission from the cathode due to the thermionic effect; the ions formed in the gas due to the very high temperature are accelerated by the electric field, strike the cathode, release energy in the collision thus causing a localized heating which generates electron emission.
The electrical arc lasts till the voltage at its ends supplies the energy sufficient to compensate for the quantity of heat dissipated and to maintain the suitable conditions of temperature. If the arc is elongated and cooled, the conditions necessary for its maintenance lack and it extinguishes.
Analogously, an arc can originate also as a consequence of a short-circuit between phases. A short-circuit is a low impedance connection between two conductors at different voltages.
The conducting element which constitutes the low impedance connection (e.g. a metallic tool forgotten on the busbars inside the enclosure, a wrong wiring or a body of an animal entered inside the enclosure), subject to the difference of potential is passed through by a current of generally high value, depending on the characteristics of the circuit.
The flow of the high fault current causes the overheating of the cables or of the circuit busbars, up to the melting of the conductors of lower section; as soon as the conductor melts, analogous conditions to those present during the circuit opening arise. At that point an arc starts which lasts either till the protective devices intervene or till the conditions necessary for its stability subsist.
The electric arc is characterized by an intense ionization of the gaseous means, by reduced drops of the anodic and cathodic voltage (10 V and 40 V respectively), by high or very high current density in the middle of the column (of the order of 102-103 up to 107 A/cm2), by very high temperatures (thousands of °C) always in the middle of the current column and – in low voltage - by a distance between the ends variable from some microns to some centimeters.
[ABB]Явление электрической дуги
Электрическая дуга между двумя электродами в газе представляет собой физическое явление, возникающее в тот момент, когда напряжения между двумя электродами превышает значение электрической прочности изоляции данного газа.
При наличии подходящих условий образуется плазма, по которой протекает электрический ток. Ток будет протекать до тех пор, пока на стороне электропитания не сработает защитное устройство.
Газы, являющиеся хорошим изолятором, при нормальных условиях, могут стать проводником в результате изменения их физико-химических свойств, которые могут произойти вследствие увеличения температуры или в результате воздействия каких-либо иных внешних факторов.
Для того чтобы понять механизм возникновения электрической дуги, следует рассмотреть, что происходит при размыкании или замыкании электрической цепи.
При размыкании электрической цепи контакты защитного устройства начинают расходиться, в результате чего постепенно уменьшается сечение контактной поверхности, через которую протекает ток.
Сопротивление электрической цепи возрастает, что приводит к увеличению температуры.
Как только контакты начнут отходить один от другого, приложенное напряжение превысит электрическую прочность воздуха, что вызовет электрический пробой.
Высокая температура приведет к ионизации воздуха, которая обеспечит протекание электрического тока по проводнику, представляющему собой электрическую дугу. Кроме термической ионизации молекул воздуха происходит также эмиссия электронов с катода, вызванная термоэлектронным эффектом. Образующиеся под воздействием очень высокой температуры ионы ускоряются в электрическом поле и бомбардируют катод. Высвобождающаяся, в результате столкновения энергия, вызывает локальный нагрев, который, в свою очередь, приводит к эмиссии электронов.
Электрическая дуга длится до тех пор, пока напряжение на ее концах обеспечивает поступление энергии, достаточной для компенсации выделяющегося тепла и для сохранения условий поддержания высокой температуры. Если дуга вытягивается и охлаждается, то условия, необходимые для ее поддержания, исчезают и дуга гаснет.
Аналогичным образом возникает дуга в результате короткого замыкания электрической цепи. Короткое замыкание представляет собой низкоомное соединение двух проводников, находящихся под разными потенциалами.
Проводящий элемент с малым сопротивлением, например, металлический инструмент, забытый на шинах внутри комплектного устройства, ошибка в электромонтаже или тело животного, случайно попавшего в комплектное устройство, может соединить элементы, находящиеся под разными потенциалами, в результате чего через низкоомное соединение потечет электрический ток, значение которого определяется параметрами образовавшейся короткозамкнутой цепи.
Протекание большого тока короткого замыкания вызывает перегрев кабелей или шин, который может привести к расплавлению проводников с меньшим сечением. Как только проводник расплавится, возникает ситуация, аналогичная размыканию электрической цепи. Т. е. в момент размыкания возникает дуга, которая длится либо до срабатывания защитного устройства, либо до тех пор, пока существуют условия, обеспечивающие её стабильность.
Электрическая дуга характеризуется интенсивной ионизацией газов, что приводит к падению анодного и катодного напряжений (на 10 и 40 В соответственно), высокой или очень высокой плотностью тока в середине плазменного шнура (от 102-103 до 107 А/см2), очень высокой температурой (сотни градусов Цельсия) всегда в середине плазменного шнура и низкому падению напряжения при расстоянии между концами дуги от нескольких микрон до нескольких сантиметров.
[Перевод Интент]Тематики
- НКУ (шкафы, пульты,...)
EN
Русско-английский словарь нормативно-технической терминологии > явление электрической дуги
17 теплопроводность
1) General subject: permeability of heat, thermal conductivity2) Engineering: conductance, conduction, heat conduction3) Construction: K value, caloric conductibility, heat conductance, heat conductivity factor, heat transfer by conduction, temperature conductivity4) Automobile industry: capacity of heat transmission, permeability to heat5) Architecture: heat transmission (U-value)6) Forestry: thermal conductivity (почвы)7) Metallurgy: conductivity for heat8) Textile: transmission of heat, transmission property9) Physics: calorific conduction, thermal conduction, transcalency11) Metrology: thermal conductivity coefficient12) Coolers: heat load capacity, thermal permeability13) Ecology: thermal diffusivity14) Power engineering: (активная) conductance15) Drilling: heat transfer16) Automation: heat-transfer capacity, heat-transmission capacity17) Aviation medicine: heat conductivity (удельная)18) Makarov: diathermancy, heat conduction (вид теплопередачи), thermal conductivity (коэффициент теплопроводности)19) Combustion gas turbines: thermal transmittance21) Cement: conducting power, conductivity, heat transmission, temperature diffusivity18 нормативное значение цилиндрической прочности бетона на сжатие при пожаре и температуре q °C
- characteristic value for the compressive cylinder strength of concrete in the fire situation at temperature q
нормативное значение цилиндрической прочности бетона на сжатие при пожаре и температуре q °C
fc,q
—
[Англо-русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011]Тематики
Синонимы
- fc,q
EN
- characteristic value for the compressive cylinder strength of concrete in the fire situation at temperature q
Русско-английский словарь нормативно-технической терминологии > нормативное значение цилиндрической прочности бетона на сжатие при пожаре и температуре q °C
19 нормативное или номинальное значение прочности либо деформации в расчетах при нормальной температуре
- characteristic or nominal value of a strength or deformation property form normal temperature design
нормативное или номинальное значение прочности либо деформации в расчетах при нормальной температуре
Xk
—
[Англо-русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011]Тематики
Синонимы
- Xk
EN
- characteristic or nominal value of a strength or deformation property form normal temperature design
Русско-английский словарь нормативно-технической терминологии > нормативное или номинальное значение прочности либо деформации в расчетах при нормальной температуре
20 термореле (КОД ANSI - 26)
термореле
Тепловая защита от перегрузок
Код ANSI -26
[ Источник]
термостат
Защита от перегрузок
[Техническая коллекция Schneider Electric. Выпуск № 1. Защита электрических сетей. Руководство по защитам]EN
26. apparatus thermal device
A device that functions when the temperature of the protected apparatus (other than the loadcarrying windings of machines and transformers as covered by device function number 49) or of a liquid or other medium exceeds a predetermined value; or when the temperature of the protected apparatus or of any medium decreases below a predetermined value.
[ Источник]Тематики
Обобщающие термины
EN
Русско-английский словарь нормативно-технической терминологии > термореле (КОД ANSI - 26)
СтраницыСм. также в других словарях:
Temperature examination — Taking a patient s temperature is an initial part of a full clinical examination.Core body temperature is normally carefully controlled within a narrow range so that essential enzymatic reactions can occur. Prolonged temperature elevation… … Wikipedia
Temperature coefficient — The temperature coefficient is the relative change of a physical property when the temperature is changed by 1 K. In the following formula, let R be the physical property to be measured and T be the temperature at which the property is… … Wikipedia
Temperature — This article is about the thermodynamic property. For other uses, see Temperature (disambiguation). A map of global long term monthly average surface air temperatures i … Wikipedia
Temperature-responsive polymer — A temperature responsive polymer is a polymer which undergoes a physical change when external thermal stimuli are presented. The ability to undergo such changes under easily controlled conditions makes this class of polymers fall into the… … Wikipedia
temperature — /tem peuhr euh cheuhr, choor , preuh , peuhr cheuhr, choor /, n. 1. a measure of the warmth or coldness of an object or substance with reference to some standard value. The temperature of two systems is the same when the systems are in thermal… … Universalium
temperature coefficient — noun : a numerical value indicating the relation between a change in temperature and a simultaneous change in some other property (as solubility); specifically : the factor α in the equation Rt.Ro(1+αt) in which Rt equals the resistance of a… … Useful english dictionary
value key — The relative level of a color s value, whether referencing an individual color, or a color scheme seen either in an artwork s entirety or in a passage within one. The lighter the value, the higher and more cheerful the value key; the darker… … Glossary of Art Terms
temperature key — The relative level of a color s temperature, whether referencing an individual color, or a color scheme seen either in an artwork s entirety or in a passage within one. The warmer the color, the higher the temperature key; the cooler the… … Glossary of Art Terms
Temperature conversion — Kelvin = Celsius (Centigrade) Fahrenheit Rankine Delisle Newton Réaumur Rømer Comparison Comparison of temperature scales ¹ Normal human body temperature is 36.8 °C ±0.7 °C, or 98.2 °F ±1.3 °F. The commonly given value 98.6 °F is simply the exact … Wikipedia
temperature — tem•per•a•ture [[t]ˈtɛm pər ə tʃər, ˌtʃʊər, prə , pər tʃər, ˌtʃʊər[/t]] n. 1) phs thr a measure of the warmth or coldness of an object or substance with reference to some standard value 2) pat phl a) the degree of heat in a living body, normally… … From formal English to slang
temperature scale — a scale used for expressing the degree of heat, based on absolute zero as a reference point (absolute scale), or with a certain value arbitrarily assigned to such temperatures as the ice point and boiling point of water under certain stipulated… … Medical dictionary
Перевод: с русского на английский
с английского на русский- С английского на:
- Русский
- С русского на:
- Все языки
- Английский
- Немецкий
- Французский